Search results for "Riemann manifold"

showing 4 items of 4 documents

Calibrations and isoperimetric profiles

2007

We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.

Calibration Riemann manifold Critical points Surfaces of revolution Radius of curvature Mathematical surfaces Mathematical constants DuetsSettore MAT/03 - Geometria
researchProduct

Recurrence and genericity

2003

We prove a C^1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C^1-generic diffeomorphisms. For instance, C^1-generic conservative diffeomorphisms are transitive. Nous montrons un lemme de connexion C^1 pour les pseudo-orbites des diffeomorphismes des varietes compactes. Nous explorons alors les consequences pour les diffeomorphismes C^1-generiques. Par exemple, les diffeomorphismes conservatifs C^1-generiques sont transitifs.

Pure mathematicsMathematics::Dynamical SystemsRiemann manifold[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences37C05 37C20FOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsDynamical system (definition)Mathematics::Symplectic GeometryMathematicsLemma (mathematics)Transitive relationRecurrence relationgeneric properties010102 general mathematicsMathematical analysissmooth dynamical systemsGeneral Medicine16. Peace & justicechain recurrence010101 applied mathematicsconnecting lemmaDiffeomorphism
researchProduct

Connexion markovienne, courbure et formule de Weitzenböck sur l'espace des chemins riemanniens

2001

Resume Nous considerons la connexion markovienne sur l'espace des chemins riemanniens. Le tenseur de courbure est calcule explicitement et une formula de Weitzenbock est etablie.

Pure mathematicsProbability theoryRiemann manifoldBeltrami operatorVector fieldGeneral MedicineCurvatureLaplace operatorMathematicsConnection (mathematics)Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Non subanalyticity of sub-Riemannian Martinet spheres

2001

Abstract Consider the sub-Riemannian Martinet structure (M,Δ,g) where M= R 3 , Δ= Ker ( d z− y 2 2 d x) and g is the general gradated metric of order 0 : g=(1+αy) 2 d x 2 +(1+βx+γy) 2 d y 2 . We prove that if α≠0 then the sub-Riemannian spheres S(0,r) with small radii are not subanalytic.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyRiemann manifoldRiemann surface010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyGeneral Medicine01 natural sciencesCombinatoricssymbols.namesake020901 industrial engineering & automationsymbolsOrder (group theory)SPHERES[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematics
researchProduct